References

Buuren, S. van. 2012. Flexible Imputation of Missing Data. Chapman & Hall/CRC Interdisciplinary Statistics. CRC Press. https://books.google.com/books?id=elDNBQAAQBAJ.
Galli, S. 2020. Python Feature Engineering Cookbook: Over 70 Recipes for Creating, Engineering, and Transforming Features to Build Machine Learning Models. Packt Publishing. https://books.google.com/books?id=2c_LDwAAQBAJ.
Géron, Aurélien. 2017. Hands-on Machine Learning with Scikit-Learn and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol, CA: O’Reilly Media.
Honnibal, Matthew, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. 2020. β€œspaCy: Industrial-strength Natural Language Processing in Python.” https://doi.org/10.5281/zenodo.1212303.
Kuhn, M., and K. Johnson. 2013. Applied Predictive Modeling. SpringerLink : BΓΌcher. Springer New York. https://books.google.com/books?id=xYRDAAAAQBAJ.
β€”β€”β€”. 2019. Feature Engineering and Selection: A Practical Approach for Predictive Models. Chapman & Hall/CRC Data Science Series. CRC Press. https://books.google.com/books?id=q5alDwAAQBAJ.
Kuhn, M., and J. Silge. 2022. Tidy Modeling with r. O’Reilly Media. https://books.google.com/books?id=98J6EAAAQBAJ.
Micci-Barreca, Daniele. 2001. β€œA Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems.” SIGKDD Explor. Newsl. 3 (1): 27–32. https://doi.org/10.1145/507533.507538.
Ozdemir, S. 2022. Feature Engineering Bookcamp. Manning. https://books.google.com/books?id=3n6HEAAAQBAJ.
Porter, Martin F. 1980. β€œAn Algorithm for Suffix Stripping.” Program 14 (3): 130–37. https://doi.org/10.1108/eb046814.
RUBIN, DONALD B. 1976. β€œInference and missing data.” Biometrika 63 (3): 581–92. https://doi.org/10.1093/biomet/63.3.581.
Thakur, A. 2020. Approaching (Almost) Any Machine Learning Problem. Amazon Digital Services LLC - Kdp. https://books.google.com/books?id=ZbgAEAAAQBAJ.