References
Buuren, S. van. 2012. Flexible Imputation of Missing Data.
Chapman & Hall/CRC Interdisciplinary Statistics. CRC Press. https://books.google.com/books?id=elDNBQAAQBAJ.
Galli, S. 2020. Python Feature Engineering Cookbook: Over 70 Recipes
for Creating, Engineering, and Transforming Features to Build Machine
Learning Models. Packt Publishing. https://books.google.com/books?id=2c_LDwAAQBAJ.
GeΜron, AureΜlien. 2017. Hands-on Machine Learning with Scikit-Learn
and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent
Systems. Sebastopol, CA: OβReilly Media.
Honnibal, Matthew, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. βspaCy: Industrial-strength Natural
Language Processing in Python.β https://doi.org/10.5281/zenodo.1212303.
Kuhn, M., and K. Johnson. 2013. Applied Predictive Modeling.
SpringerLink : BΓΌcher. Springer New York. https://books.google.com/books?id=xYRDAAAAQBAJ.
βββ. 2019. Feature Engineering and Selection: A Practical Approach
for Predictive Models. Chapman & Hall/CRC Data Science Series.
CRC Press. https://books.google.com/books?id=q5alDwAAQBAJ.
Kuhn, M., and J. Silge. 2022. Tidy Modeling with r. OβReilly
Media. https://books.google.com/books?id=98J6EAAAQBAJ.
Micci-Barreca, Daniele. 2001. βA Preprocessing Scheme for
High-Cardinality Categorical Attributes in Classification and Prediction
Problems.β SIGKDD Explor. Newsl. 3 (1): 27β32. https://doi.org/10.1145/507533.507538.
Ozdemir, S. 2022. Feature Engineering Bookcamp. Manning. https://books.google.com/books?id=3n6HEAAAQBAJ.
Porter, Martin F. 1980. βAn Algorithm for Suffix
Stripping.β Program 14 (3): 130β37. https://doi.org/10.1108/eb046814.
RUBIN, DONALD B. 1976. βInference and missing
data.β Biometrika 63 (3): 581β92. https://doi.org/10.1093/biomet/63.3.581.
Thakur, A. 2020. Approaching (Almost) Any Machine Learning
Problem. Amazon Digital Services LLC - Kdp. https://books.google.com/books?id=ZbgAEAAAQBAJ.